14 research outputs found

    Stability results for neutral fractional stochastic differential equations

    Get PDF
    Many techniques have been recently employed by researchers to address the challenges posed by fractional differential equations. In this paper, we investigate the concept of Ulam-Hyers stability for a class of neutral fractional stochastic differential equations by using the Banach fixed point theorem and the stochastic analysis techniques. An example is presented at the end of the paper to show the interest and the applicability of the results

    A sophisticated Drowsiness Detection System via Deep Transfer Learning for real time scenarios

    Get PDF
    Driver drowsiness is one of the leading causes of road accidents resulting in serious physical injuries, fatalities, and substantial economic losses. A sophisticated Driver Drowsiness Detection (DDD) system can alert the driver in case of abnormal behavior and avoid catastrophes. Several studies have already addressed driver drowsiness through behavioral measures and facial features. In this paper, we propose a hybrid real-time DDD system based on the Eyes Closure Ratio and Mouth Opening Ratio using simple camera and deep learning techniques. This system seeks to model the driver's behavior in order to alert him/her in case of drowsiness states to avoid potential accidents. The main contribution of the proposed approach is to build a reliable system able to avoid false detected drowsiness situations and to alert only the real ones. To this end, our research procedure is divided into two processes. The offline process performs a classification module using pretrained Convolutional Neural Networks (CNNs) to detect the drowsiness of the driver. In the online process, we calculate the percentage of the eyes' closure and yawning frequency of the driver online from real-time video using the Chebyshev distance instead of the classic Euclidean distance. The accurate drowsiness state of the driver is evaluated with the aid of the pretrained CNNs based on an ensemble learning paradigm. In order to improve models' performances, we applied data augmentation techniques for the generated dataset. The accuracies achieved are 97 % for the VGG16 model, 96% for VGG19 model and 98% for ResNet50 model. This system can assess the driver's dynamics with a precision rate of 98%

    Fuzzy logic-based vehicle safety estimation using V2V communications and on-board embedded ROS-based architecture for safe traffic management system in hail city

    Get PDF
    Estimating the state of surrounding vehicles is crucial to either prevent or avoid collisions with other road users. However, due to insufficient historical data and the unpredictability of future driving tactics, estimating the safety status is a difficult undertaking. To address this problem, an intelligent and autonomous traffic management system based on V2V technology is proposed. The main contribution of this work is to design a new system that uses a real-time control system and a fuzzy logic algorithm to estimate safety. The robot operating system (ROS) is the foundation of the control architechture, which connects all the various system nodes and generates the decision in the form of a speech and graphical message. The safe path is determined by a safety evaluation system that combines sensor data with a fuzzy classifier. Moreover, the suitable information processed by each vehicle unit is shared in the group to avoid unexpected problems related to speed, sudden braking, unplanned deviation, street holes, road bumps, and any kind of street issues. The connection is provided through a network based on the ZigBee protocol. The results of vehicle tests show that the proposed method provides a more reliable estimate of safety as compared to other methods

    Artificial Intelligence-Based Diabetes Diagnosis with Belief Functions Theory

    No full text
    We compared various machine learning (ML) methods, such as the K-nearest neighbor (KNN), support vector machine (SVM), and decision tree and deep learning (DL) methods, like the recurrent neural network, convolutional neural network, long short-term memory (LSTM), and gated recurrent unit (GRU), to determine the ones with the highest precision. These algorithms learn from data and are subject to different imprecisions and uncertainties. The uncertainty arises from the bad reading of data and/or inaccurate sensor acquisition. We studied how these methods may be combined in a fusion classifier to improve their performance. The Dempster–Shafer method, which uses the formalism of belief functions characterized by asymmetry to model nonprecise and uncertain data, is used for classifier fusion. Diagnosis in the medical field is an important step for the early detection of diseases. In this study, the fusion classifiers were used to diagnose diabetes with the required accuracy. The results demonstrated that the fusion classifiers outperformed the individual classifiers as well as those obtained in the literature. The combined LSTM and GRU fusion classifiers achieved the highest accuracy rate of 98%

    New Result for the Analysis of Katugampola Fractional-Order Systems—Application to Identification Problems

    No full text
    In the last few years, a new class of fractional-order (FO) systems, known as Katugampola FO systems, has been introduced. This class is noteworthy to investigate, as it presents a generalization of the well-known Caputo fractional-order systems. In this paper, a novel lemma for the analysis of a function with a bounded Katugampola fractional integral is presented and proven. The Caputo–Katugampola fractional derivative concept, which involves two parameters 0 0, was used. Then, using the demonstrated barbalat-like lemma, two identification problems, namely, the “Fractional Error Model 1” and the “Fractional Error Model 1 with parameter constraints”, were studied and solved. Numerical simulations were carried out to validate our theoretical results

    Ulam–Hyers Stability of Pantograph Hadamard Fractional Stochastic Differential Equations

    No full text
    In this article, we investigate the existence and uniqueness Theorem of Pantograph Hadamard fractional stochastic differential equations (PHFSDE) using the fixed-point Theorem of Banach (BFPT). According to the generalized Gronwall inequalities, we prove the stability in the sense of Ulam–Hyers (UHS) of PHFSDE. We give some examples to show the effectiveness of our results

    A Robust and Non-Fragile Observer Design for Nonlinear Fractional-Order Systems

    No full text
    The challenge of developing observers for classical integer-order systems that are both resilient and non-fragile has received a lot of attention in the literature. However, only a few articles have addressed the topic of developing observers for Fractional-Order (FO) systems that are both H-infinity H∞ and non-fragile. The current work handles the Caputo fractional-order systems as the first work, to our knowledge, which treats such problems. The authors provide a novel result for building non-fragile and robust observers for nonlinear Caputo fractional-order systems. For this, the H∞ performance method is utilized. Simulations for a numerical example confirm the efficacy of the suggested technique. The primary advantage of the current work is that it is the first to address the Caputo fractional-order system problem

    Power System Reconfiguration in Distribution Network for Improving Reliability Using Genetic Algorithm and Particle Swarm Optimization

    No full text
    This paper presents an optimal method for optimizing network reconfiguration problems in a power distribution system in order to enhance reliability and reduce power losses. Network reconfiguration can be viewed as an optimization problem involving a set of criteria that must be reduced when adhering to various constraints. The energy not supplied (ENS) during permanent network faults and active power losses are the objective functions that are optimized in this study during the reconfiguration phase. These objectives are expressed mathematically and will be integrated into various optimization algorithms used throughout the study. To begin, a mathematical formulation of the objectives to be optimized, as well as all the constraints that must be met, is proposed. Then, to solve this difficult combinatorial problem, we use the exhaustive approach, genetic algorithm (GA), and particle swarm optimization (PSO) on an IEEE 33-bus electrical distribution network. Finally, a performance evaluation of the proposed approaches is developed. The results show that optimizing the distribution network topology using the PSO approach contributed significantly to improving the reliability, node voltage, line currents, and calculation time

    Continuous Stability TS Fuzzy Systems Novel Frame Controlled by a Discrete Approach and Based on SOS Methodology

    No full text
    Generally, the continuous and discrete TS fuzzy systems’ control is studied independently. Unlike the discrete systems, stability results for the continuous systems suffer from conservatism because it is still quite difficult to apply non-quadratic Lyapunov functions, something which is much easier for the discrete systems. In this paper and in order to obtain new results for the continuous case, we proposed to connect the continuous with the discrete cases and then check the stability of the continuous TS fuzzy systems by means of the discrete design approach. To this end, a novel frame was proposed using the sum of square approach (SOS) to check the stability of the continuous Takagi Sugeno (TS) fuzzy models based on the discrete controller. Indeed, the control of the continuous TS fuzzy models is ensured by the discrete gains obtained from the Euler discrete form and based on the non-quadratic Lyapunov function. The simulation examples applied for various models, by modifying the order of the Euler discrete fuzzy system, are presented to show the effectiveness of the proposed methodology

    Continuous Stability TS Fuzzy Systems Novel Frame Controlled by a Discrete Approach and Based on SOS Methodology

    No full text
    Generally, the continuous and discrete TS fuzzy systems’ control is studied independently. Unlike the discrete systems, stability results for the continuous systems suffer from conservatism because it is still quite difficult to apply non-quadratic Lyapunov functions, something which is much easier for the discrete systems. In this paper and in order to obtain new results for the continuous case, we proposed to connect the continuous with the discrete cases and then check the stability of the continuous TS fuzzy systems by means of the discrete design approach. To this end, a novel frame was proposed using the sum of square approach (SOS) to check the stability of the continuous Takagi Sugeno (TS) fuzzy models based on the discrete controller. Indeed, the control of the continuous TS fuzzy models is ensured by the discrete gains obtained from the Euler discrete form and based on the non-quadratic Lyapunov function. The simulation examples applied for various models, by modifying the order of the Euler discrete fuzzy system, are presented to show the effectiveness of the proposed methodology
    corecore